
The results of a series of genetically optimized controllers
were compared to a linear-scaling heuristic with its
parameters tuned by a simple gradient-descent algorithm.
The results were computed for a sparse sampling of the
state space (an example pictured left) and the heuristic
controller performance strongly predicted the genetically
optimized performance (and vice versa).

The base gain schedule profile (pictured right) is the mean
profile of the controllers resulting from 50+ genetic
optimizations. This profile is linearly scaled to produce the
heuristically driven controller and departs significantly from
traditionally employed gain profiles.

•Gain-Scheduled Control
•Divides the swing motion into several sectors (ten)
•Sector applies its own independent set of controller gains as the swing leg 
crosses each partition
•Allows for any individual portion of the swing to “relax” or “tighten” control 
as necessary

•Genetic Optimization
•Treats all gains for each sector (as well as the magnitude of the pre-
collision impulse) as free parameters (21 total)
•Each generation slightly “mutates” the free parameters and selects the best 
solutions of the new generation
•The “best” solution is determined by a cost function which is set to prefer 
speed or energy efficiency
•Relatively computationally “expensive” to run

•Linear Scaling Heuristic
•Takes a base gain schedule (profile) and scales it based upon the demand 
for either speed or energy efficiency
•Facilitates a simple means of producing tradeoffs
•Requires the tuning of significantly fewer parameters (six)
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The field of legged robotics has been long anticipated in the popular media to herald a
revolution in both civilian and military life. From mechanical fire fighters barreling through
burning apartments with minimal regard for self-preservation to nimble explorers bounding up
Martian ridges who never complain about the cold, finding applications for bipedal machines
requires little imagination. Despite their promised dexterity and overall popular appeal, in the
early 21st century, bipedal robots are seldom sighted outside of university research labs or
cutting-edge technology firms.

The absence of these legged machines in our daily lives can be attributed to
significant technical barriers in performance. The largely untold flaw of Honda’s flagship
robotic humanoid, ASIMO, is that its exorbitant energy consumption drains its generously
sized battery pack in roughly 30 minutes, nullifying its utility outside of relatively short public
demonstrations. Recognizing that this energy limitation is not unique to ASIMO but common
among current-generation walking robots, academic researchers have recently pushed to
develop highly efficient bipeds. The consequence was a series of prototypes which trade an
abundance of actuation and control authority for an under-actuated approach dubbed
Dynamic Walking. Specifically, Cornell University developed two internationally publicized
walking machines; one which boasted energy efficiency on par with human walking (for short
distances) and the Cornell Ranger which set a world record for walking 5.6 miles on a single
battery charge.

While delivering such significant advances in energy efficiency, dynamic walking
robots have still largely fallen short in applications with high speed requirements or rough
terrain. This investigation uses simulation to explore the inherent tradeoffs of controlling
high-speed and highly robust walking robots while minimizing energy consumption. Using a
novel controller which optimizes robustness, energy efficiency, and speed of a simulated
robot on rough terrain, the user can adjust their priorities between these three outcome
measures and systematically generate a characteristic performance curve. This curve
represents the entire spectrum of performance for the given robot, revealing necessary
energy costs for various demands of speed and robustness.

The novel robot controller is a two-tiered hierarchical system consisting of a
heuristically-driven single-step controller and an overseeing Artificial Intelligence algorithm.
The single-step controller is generated by tuning a set of control parameters in order to
closely approximate an optimal performance curve produced by a series of genetic
optimizations. This single step is calculated to produce the desired step speed for the least
amount of energy expenditure. The Artificial Intelligence algorithm, more precisely described
as a Value Iteration Reinforcement Learning Algorithm, is tasked to optimally plan for future
steps. This step-planning algorithm decides which actions are taken by the single-step
controller, thereby seeking conditions conducive to superior walking performance and
avoiding unfavorable situations which the single-step controller lacks the foresight to evade.

Terrain is modeled as a stochastically
generated variation in ground height.
Using a Gaussian distribution, increasing
the standard deviation raises the relative
terrain roughness.
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MIT Model and Testbed Robot (Byl, 
Tedrake 2009)

•Pre-collision Impulse

•An instantaneous push-
off of the stance leg just 
prior to swing leg 
collision

•Efficient means of 
imparting energy to the 
system

•Hip Torque

•A pure torque applied at 
the hip joint

•A PD (Proportional-
Derivative) Controller 
regulates the interleg 
angle
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R² = 0.9924
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The mean first-passage time (MFPT) is a metric for stability in metastable stochastic systems. After the
learning algorithm has converged upon an action policy, a Markov Decision Process (MDP) is generated
which characterizes the probability of one robot state transitioning to another. Computing and ranking
the eigenvalues of this matrix (λn), the second largest eigenvalue is used to calculate the MFPT which
approximates the number of steps to failure.

A subset of Artificial Intelligence, the Value Iteration Reinforcement Learning Algorithm
operates by selecting actions likely to optimize future reward, seeking maximal value. In
preparation for each step, an Action-Value Function (Q) is generated by consulting the
current robot state, State-Value Function (V), and an estimation of likely future states
(Transition Matrix Tij). After executing the best action (max(Q)), the aforementioned
functions are updated in preparation for the next decision, facilitating learning.

MIT Results published by Katie Byl and Russ Tedrake (2009) using the Value
Iteration Reinforcement Learning Algorithm
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Conclusion and Future Work
For the single-step case, a “trade-off conducive” controller was successfully
devised. Informed by the results of a series of genetic optimizations, a
comparatively simple heuristically-driven gain-scheduled controller was
developed which approximates the performance of genetically optimized
controllers, even when the heuristic parameters are tuned in an automated or
blinded fashion. When compared to traditional profiles, the optimization
inspired “ramp” profile has been shown to yield superior performance over a
range of speed-energy demands.

Full implementation of this heuristic single-step controller requires the
overseeing Value Iteration Algorithm. This method already has precedent in
use with bipedal robots on rough terrain, however, only with a single metric and
a relatively limited action space. Using the “trade-off conducive” heuristic, the
learning algorithm has access to a highly diverse action space with which to
achieve a variety of demands for robustness, energy efficiency, and speed on
rough terrain. Ongoing work will investigate the efficacy of this mesh of
methods, objectives, and application.
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