Robotic Foot
Lee Markison, Jerec Ricci, Chris Shake, Chris Slavin
Advisor: Professor Keith Buffinton
Special thanks to:
Professor Charles Kim, Professor Peter Stryker, Dan Johnson, Tom Thul, Tim Baker, Bob Brungraber

Components:
- **Body Section:**
 - Bolted two plate design
 - Material cut out between plates for weight
 - Ankle connection screwed to top plate
 - Bearings for smooth motion
 - Rubber tread on bottom of toe plate

- **Toe Section:**
 - Bolted two plate design
 - Material cut out between plates for weight
 - Dummy load cells between plates
 - Space for adding load cells in the future
 - Rubber tread on bottom of toe plate
 - Contoured shape to look more like human foot

- **Steel axle in hinge:**
 - Springs on axle to store energy when toe is deflected
 - Calculated to provide appropriate force during toe-off
 - Easily interchangeable

- **Sensors:**
 - Encoder bracket mounts encoder to top of foot
 - Wiring goes to main robot
 - Pulley connects encoder to toe section to measure angle of toe deflection
 - Load cells placed between plates at corners
 - Load cells are held in place with bolts
 - Measure total force and center of pressure

Testing:
- **Load Bearing Capacity:**
 - Verification of FEA results
 - Weights hung from hinge on body section
 - Deflection measured to be linear

- **Electrical Testing:**
 - Encoder verified to work
 - Load cells tested independently
 - Homemade amplifier used for verification, final amp will be made in-house
 - Algorithms tested for finding center of pressure from the four load cells

- **Theoretical:**
 - SolidWorks/COSMOSWorks used for FEA
 - Models created in SolidWorks, simple integration
 - Tested for various load conditions, including the physical test case for verification
 - Accuracies of various components used to determine theoretical margin of error and standard deviation

Functions/Requirements:
- **Load reading & Center of Pressure calculation:**
 - Four load cells on corners of body section
 - Measure 0 to 500lb each
 - Pre-loaded to 100lb to allow for negative force
 - Balance of all loads yields equivalent single force
 - Gives magnitude and location
 - Potential to add 3 load cells in toe to allow measurement when balancing only on the toe

- **Pivoting toe section for energy storage and release:**
 - Hinge connects toe and body sections
 - Axles connected with set screws to toe, and freely rotates within body section
 - Springs around axle provide energy storage
 - Horizontal and vertical limit stops on hinge

- **Strength and durability for walking:**
 - Using 6061-T6 aluminum
 - Plate dimensions determined with FEA
 - Load tested after parts were machined to verify FEA results

- **Weight less than 2.5 lbs:**
 - 2.2 lbs with spacers instead of load cells
 - Weighs less than 2.5 lbs with all components

- **Deflection of Top Plate**
 - Sensors:
 - Encoder bracket mounts encoder to top of foot
 - Wiring goes to main robot
 - Pulley connects encoder to toe section to measure angle of toe deflection
 - Load cells placed between plates at corners
 - Load cells are held in place with bolts
 - Measure total force and center of pressure

- **Electrical Testing:**
 - Encoder verified to work
 - Load cells tested independently
 - Homemade amplifier used for verification, final amp will be made in-house
 - Algorithms tested for finding center of pressure from the four load cells

- **Theoretical:**
 - SolidWorks/COSMOSWorks used for FEA
 - Models created in SolidWorks, simple integration
 - Tested for various load conditions, including the physical test case for verification
 - Accuracies of various components used to determine theoretical margin of error and standard deviation