Aeration of Net Alkaline Mine Drainage to Degas CO2, Increase pH and Iron Oxidation Rates

Carl Kirby, Adam Dennis, Adam Kahler

Objectives

- Aerate Net Alkaline Mine Drainage
 - Degas CO₂
 - Increase pH
 - Increase Fe(II) Oxidation Rates
 - Model Fe(II) concentrations, pH, alkalinity, CO₂ to predict pond size

 Compare to area required for passive treatment (no aeration)

Mine Drainage Chemistry

Formation:

- $FeS_2 + H_2O + 7/2O_2 = Fe^{2+} + 2SO_4^{2-} + 2H^+$ or
- $FeS_2 + 7/2H_2O + 15/4O_2 = Fe(OH)_{3,s} + 2SO_4^{2-} + 4H^+$
- $Fe^{2+} + 1/4O_2 + H^+ = Fe^{3+} + 1/2H_2O$
- $Fe^{3+} + 3H_2O = Fe(OH)_{3,s} + 3H^+$

Net Alkalinity

From Kirby and Cravotta (2005)

- Either
 - If "hot acidity" < 0 (*with negative values reported*)
 or
 - measured alkalinity calculated acidity > 0
 - •Where calc. acidity, mg/L CaCO₃
 - = 50000(2*Fe/56 + 3*Al/27 + 2*Mn/55 + 10³*10^{-pH})

 In practice, water with metals removed will have pH ≥ 6.3

Increasing pH dramatically increases Fe(II) oxidation rates

Study Area Location

Field Setting

Photos courtesy of S. Kirby and Jim Koharski

Figure courtesy USGS 7.5" Shamokin Quad.

Fe(II) = 16 mg/L Al < 0.5 mg/L pH 5.7 Alk = 117 mg/L CaCO₃

Flow = 2000 L/min scaled to reactor

Fe(II) = 16 mg/L Al < 0.5 mg/L pH 6.1 Alk = 170 mg/L CaCO₃

Flow = 17400 L/min

Site 21 Field Setup

Packer 5 Site

Modeling

Arrowheads point to parameter that is a function of the parameter at the initial end.

Compare to Hedin et al. (1994) Estimate $-\left(\frac{20g}{m^2}\right)/day$

Winter (5 °C), 1 m deep

	Acres	Acres	HP
Site	Hedin	Model 2	Model 2
Site 21	1	0.1	15
Packer 5	5	0.5	50

Summer (20 °C), 1 m deep

	Acres	Acres	HP
Site	Hedin	Model 2	Model 2
Site 21	1	0.1	8
Packer 5	5	0.5	25

10X smaller pond with aeration....

...but what about the settling pond?

Conclusions

- Aeration method very effective for net alkaline, high-CO₂ waters
 - pH increase promotes rapid Fe(II) oxidation
- With aeration treatment ponds at least <u>10x smaller</u> than passive treatment
- Can apply to effluent from ALD's
- Settling pond of unknown size would need to follow oxidation pond

Future Research Estimate costs of a building/running a treatment system

Investigate aeration methods

Tubular Fine Bubble Diffuser

Environmental Solutions LLC "Maelstrom Oxidizer"

Future Research

Investigate aeration methods

Aeration Solutions Inc. Diffuser grid and blower

Future Research Characterize sediment for pigment quality

Acknowledgments:

Shamokin Creek Restoration Alliance

PA Dept. of Environmental Protection Growing Greener Program

Dr. Charles A. Cravotta, III

Katherine Mabis McKenna Foundation

Michael Dennis

