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Abstract

We introduce a detailed numerical simulation and analysis framework
to extend the principles of passive dynamic walking to quadrupedal
locomotion. Non-linear limit cycle methods are used to identify pos-
sible gaits and to analyze the stability and efficiency of quadrupedal
passive dynamic walking. In doing so, special attention is paid to
issues that are inherent to quadrupedal locomotion, such as the oc-
currence of simultaneous contact collisions and the implications of
the phase difference between front and back leg pairs. Limit cycles
identified within this framework correspond to periodic gaits and
can be placed into two categories: in-phase gaits in which front and
back legs hit the ground at roughly the same time, and out-of-phase
gaits with a �90� phase shift between the back and front leg pairs.
The latter are, in comparison, energetically more efficient but ex-
hibit one unstable eigenvalue that leads to a phase divergence and
results in a gait-transition to a less efficient in-phase gait. A detailed
analysis examines the influence of various parameters on stability
and locomotion speed, with the ultimate goal of determining a stable
solution for the energy-efficient, out-of-phase gait. This was achieved
through the use of a wobbling mass, i.e. an additional mass that is
elastically attached to the main body of the quadruped. The methods,
results, and gaits presented in this paper additionally provide a point
of departure for the exploration of the considerably richer range of
quadrupedal locomotion found in nature.
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1. Introduction

A new paradigm in the control of walking machines consid-
ers stability and gait creation less as a continuous-time prob-
lem but rather by looking at the entire gait cycle as a single
entity. This is a particularly fruitful approach to the study of
passive dynamic locomotion in which most of a system’s de-
grees of freedom are allowed to move freely and simply fol-
low their natural dynamic motions, while the periodicity (and
therefore stability) of the gait is only monitored at distinct in-
stances. This idea of exploiting natural dynamics rather than
imposing specific kinematic trajectories leads to an extremely
efficient gait as it does not require actuators to perform nega-
tive work associated with tracking a nominal trajectory. This
becomes especially important in the presence of disturbances:
instead of actively resisting them to stay on a nominal trajec-
tory, deviations from the periodic motion are tolerated and the
natural dynamics are used to damp out the disturbances over
the course of several steps of motion.

These principles emerge most impressively in so-called
passive dynamic walkers. These walkers are simple mechan-
ical mechanisms that do not possess actuation or sensing of
any kind but in essence use the dynamics of coupled pendula
to walk down a shallow incline. The most striking property of
these mechanisms is the fact that for a well-selected set of pa-
rameters (link masses and inertial properties) the motion is dy-
namically stable. Even in the presence of small disturbances,
the mechanism is able to walk continuously while maintain-
ing a steady step length and forward speed. McGeer (1990a)
was the first to describe these concepts in his seminal paper
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on passive dynamic walking. Since then, these principles have
been extended to mechanisms with knees (McGeer 1990b) and
to walkers that move stably in three dimensions (Collins et al.
2001). Passive dynamic stability has also been shown to as-
sist human walking (Bauby and Kuo 2000). Members of the
robotic community have incorporated these principles into a
succession of prototype walkers (Collins et al. 2005� Dertien
2006� Wisse et al. 2007) and demonstrated how to add actua-
tion without drastically impeding the natural dynamics. This is
important to achieving powered walking on level ground and
allows for directional control of these very efficient walkers.

The application of these principles to quadrupedal locomo-
tion, however, has drawn far less attention. Smith and Berke-
meier (1997) are, to the best of the authors’ knowledge, the
only researchers who have analyzed the implications of pas-
sive dynamics to true quadrupedal walking. Their principal
finding was the identification of two stable passive dynamic
walking gaits: a two-beat gait in which the front and back feet
move in phase, and a four-beat gait in which they move 90�
out of phase. The latter is energetically more efficient, as less
energy is lost in collisions, but appeared to be unstable for a
reasonable range of parameter variations.

Based on their work, a detailed simulation framework
was created to comprehensively study passive dynamic gaits
of quadrupeds. We assessed the stability of various gaits
and quantified the potential energy savings of the four-beat
quadruped gait. The “efficiency” of a particular gait is ex-
pressed through the maximal achievable walking speed on a
given slope. This measure of efficiency was chosen rather than
the nominal cost of transportation (CoT) since the CoT de-
pends solely on the inclination of the slope and hence is not
suited for direct comparisons of passive dynamic walkers. The
primary focus of our work is to investigate means of stabilizing
the energetically more efficient four-beat quadruped gait. This
was ultimately achieved through the use of a wobbling mass
that was added to the main body of the quadruped.

2. Multi-body Quadrupedal Model

For the purposes of this study, a quadruped was modeled as a
planar multi-body system (Figure 1). The main body and the
legs are represented by five rigid links with distributed mass
that are connected by rotational joints at the hip and shoul-
der. Feet were modeled as points with no geometrical exten-
sion (sacrificing performance for simplicity in comparison to
curved feet (Adamczyk et al. 2006)). During contact, the feet
are consequently modeled as simple rotational joints that con-
nect the stance legs to a fixed point on the ground. The swing
legs move freely around the hip and shoulder, respectively, giv-
ing the system a total of three degrees of freedom. Joint fric-
tion was not modeled and thus energy losses only occur during
ground collisions. To compensate for these losses and to main-
tain a steady walking speed, walking on a shallow slope was

Fig. 1. Model of a passive dynamic quadruped. The two stance
feet are effectively pinned to the ground, which gives the
model the dynamics of a four-bar linkage with two additional
links (the swing legs) attached to hip and shoulder joints.

simulated by pointing the gravity vector slightly to the right
of vertically downwards. An extension used here to the me-
chanics of the passive dynamic bipeds described by McGeer is
the inclusion of hip and shoulder springs. These are torsional
springs that connect the stance and swing legs of each leg pair.
They are not connected to the main body and produce equal
and opposite torques on the legs.

All units in the system model were normalized (Hof 1996)
with respect to leg length l and total mass M . The gravita-
tional constant was set equal to one, which has the advan-
tage that velocities are expressed in the units of

�
gl which

means that their value is equal to the square root of the Froude
number (Vaughan and O’Malley 2005). The remaining para-
meters of our model roughly correspond to the dimensions
and mass properties of a Merino sheep (Table 1). The equa-
tions of motion for this system were derived and numerically
integrated using MATLAB/Simulink and the SimMechanics
toolbox (The MathWorks, Natick, MA). This toolbox uses a
relative coordinate formulation together with recursive com-
putational procedures to compute the equations of motions
(Wood and Kennedy 2003). Numerical integration was per-
formed with a Runge–Kutta method using the Dorman–Price
(4, 5) pair (Shampine and Reichelt 1997). During integration
total system energy was monitored to detect numerical errors.

3. Collision Modeling

The contact events at foot strike were modeled as fully inelas-
tic collisions such that the point of contact of the impacting
foot comes to a complete stop after the collision while the cor-
responding stance foot leaves the ground at the same time. If
the swing foot reaches the ground plane while moving in the
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Table 1. Parameter values of the quadruped model are
given in units normalized relative to total mass and leg
length. The proportions of the model roughly represent
the dimensions and mass properties of a Merino sheep.
Ground inclination was selected to create a walking speed
similar to that used by Merino sheep.

Total mass 1M

Leg length 1l

Main body mass 0.8M

Main body length 1.5l

Main body radius of gyration
�

1�10 main body length

Main body COM position Center

Leg mass 0.05M

Leg radius of gyration 2
3

�
1�10l

Leg COM position 1
3 l below joints

Ground inclination 1�

Hip/shoulder spring stiffness 0 Mgl�rad

negative y-direction, the integration of the equations of mo-
tion is stopped and the computation of post-impact velocities
is triggered. As we are dealing with a knee-less model, colli-
sion detection is limited to states in which the swing foot is in
front of the corresponding stance foot. This prevents (numer-
ical) foot scuffing during swing and the untimely termination
of the simulation.

Collision dynamics were developed from the impulse–
momentum relations describing the velocity changes of the in-
dividual segments, expressed in Cartesian coordinates, along
with the constraints describing the impulse balances and kine-
matic coupling in the joints and points of contact to produce a
total of 35 linear equations in 35 unknowns (15 velocities and
20 impulses). They are stated in matrix form as Ax � b, where
x � � �x�1 �y�1 ��1 � � � ��5 I x

1a I y
1a � � � I y

5b�
T is a vector

composed of the unknown velocities after impact and the im-
pulsive forces, and b � � �x	1 �y	1 �	1 � � � �	5 0 � � � 0�T

is a vector containing the known pre-impact velocities padded
with zeros. The coefficient matrix A is sparse (Figure 2). The
post-impact velocities v� are calculated from a vector of pre-
impact velocities v	 using the equation:

v� � A	1v	 (1)

with A	1 containing solely the upper left 15
 15 elements of
A	1. After each exchange of stance and swing legs, the next
step of the numerical integration of the equations of motion is
begun again with the newly computed velocities.

Fig. 2. Structure of the coefficient matrix A that is used to com-
pute the changes in velocities during collisions. In this specific
example, the contacts at legs 2 and 3 are open/opening, while
the contacts of legs 4 and 5 are closed/closing.

3.1. Simultaneous Collisions

An important consideration in quadrupedal walking is a clear
understanding and analysis of the effect of the sequence, or si-
multaneity, of the collision impacts corresponding to each of
the footfalls. When the time between two contact events be-
comes infinitesimally small, the geometrical properties of the
system and the velocities of the links remain unchanged be-
tween the first collision and the second. All changes in veloc-
ities can therefore be understood by considering the sequence
of matrix operations presented in (1). The primary collision
is described either by a matrix AFront or ABack, depending on
which swing foot hits the ground first. The second collision
matrix (ABoth) is identical in both cases, as an exchange of
stance and swing foot has occurred both in the front and back
leg pairs. It is, in fact, possible to use solely this matrix to sim-
ulate a truly simultaneous collision, in which both pairs of legs
(front and back) exchange support at the same moment (which
is a rather theoretical situation). Depending on the order (or si-
multaneity) of the contact events, the post-collision velocities
must be expressed in one of the following three ways:

v� � A	1
BothA	1

Frontv
	� for the order front leg, back leg, (2)

v� � A	1
Bothv	� for a truly simultaneous collision, (3)

v� � A	1
BothA	1

Backv	� for the order back leg, front leg. (4)
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The computation of the post-impact velocities consequently
depends strongly on the (numerical) determination of order of
contact or simultaneous contact. The implications of this are
described in more detail in Section 5.1.

4. Limit Cycle Analysis

Throughout our study, the following seven state variables con-
stitute the state vector x.

� Angles of the back stance leg and the two swing legs.
All angles are expressed with respect to the vertical.

� Angular velocities of these three legs.

� Distance between front stance foot and back stance foot
points of contact (this state variable has a derivative of
zero and is only altered at the transfer of support).

With these coordinates, the search for a periodic gait can
be seen as the identification of a limit cycle in the seven-
dimensional state space of the robot. A Poincaré section based
on the back foot ground contact was used to define a stride-to-
stride transfer function P���, mapping a vector of initial states
xk at the beginning of a half stride to the states at the beginning
of the next half stride according to xk�1 � P

�
xk
�
. A numer-

ical root search was used to identify initial conditions x that
resulted in a periodic gait (i.e. when P �x�	 x � 0).

For a small disturbance �x to a periodic initial condition
x, the stride-to-stride transfer function can be linearly approx-
imated by P �x ��x� � x � J�x, where J is the Jaco-
bian (the monodromy matrix) of the transfer function. A dis-
turbance close to a periodic solution evolves according to the
relation: �xk�1 � J�xk . If the magnitude of all eigenvalues
(the Floquet multipliers) of J is smaller than one, any distur-
bance will vanish over time and the limit cycle is considered
stable. If at least one eigenvalue has a magnitude larger than
one, the system is unstable. As a disturbance parallel to the so-
lution vector of the actual limit cycle will be completely elimi-
nated within a single stride, one of the eigenvalues will always
be zero. For this reason only the six non-zero eigenvalues are
reported throughout this paper.

5. Periodic Gaits

The limit cycles (or periodic gaits) that were identified can
be placed into two categories: gaits in which front and back
legs hit the ground at the same time (or roughly the same
time) and gaits with a �90� phase shift between the back and
front leg pair. For other phase shifts no periodic solutions were
obtained. In the simplified planar and symmetric model used
here, no difference between left and right legs, or a positive
and a negative phase shift, exists. The range of possibilities for

Fig. 3. Periodic gaits found for the passive dynamic quadruped
can be classified into gaits in which two feet strike the ground
at roughly the same time (the pace shown in (a) and the trot in
(b)) and gaits in which the feet strike the ground in an evenly
spaced sequence (the lateral single foot gait in (c) and the di-
agonal single foot gait in (d)). For gaits corresponding to other
motion phase shifts, no periodic solutions are obtained. Note
that in the simplified planar model used here, no difference
between a trot and a pace and between a lateral and a diag-
onal sequence exists. Gaits (a) and (b) are thus referred to as
“two-beat” and gaits (c) and (d) as “four-beat”.

footfall sequences (Figure 3) can thus be reduced to the no-
tion of either an in-phase “two-beat” gait or a 90� out-of-phase
“four-beat” gait. We preferred the terms two-beat gait and four-
beat gait to more established zoological terms (such as “trot”,
“pace”, “amble”, or “single-foot gait”), as these terms tend to
suggest certain properties and characteristics that are not rep-
resented in our simplified model.

5.1. Two-beat Gait

A truly exact two-beat gait is a mere theoretical construct:
if front and back legs of the quadruped model are exactly in
phase, identical forces and impulses act on both ends of the
connecting link (main body). No work is transmitted from one
leg pair to the other through the main body and the quadruped
behaves like two independent bipeds, each carrying half the
mass of the quadruped’s main body. For the parameters of our
model, this results in a normalized walking speed of 0.184�

l � g on a 1� slope.
A single passive dynamic biped modeled in this way walks

stably, and a Floquet analysis shows that its eigenvalues have a
magnitude smaller than one (Table 2 and Figure 4). If two iden-
tical bipeds are connected to form a quadruped with an exact
two-beat gait, however, the slightest disturbance eliminates the
(only theoretically possible) exact simultaneity of their contact
collisions. In this case, the collisions must now be processed in
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Table 2. Eigenvalues and forward velocities of an inexact two-beat gait of a quadruped, a four-beat gait of a quadruped,
and a stable gait of a biped with corresponding system parameters.

Gait Quadruped Biped

Two-beat Four-beat

Eigenvalues 0.060 + 0.851i –0.030 + 0.005i –0.416 + 0.422i

0.060 – 0.851i –0.030 – 0.005i –0.416 – 0.422i

0.460 + 0.395i 0.128 + 0.602i 0.046

0.460 – 0.395i 0.128 – 0.602i –

0.012 0.086 –

0.025 2.381 –

Velocity 0.202
�

l � g 0.224
�

l � g 0.184
�

l � g

Fig. 4. Overlaid root locus plots of the eigenvalues of the mon-
odromy matrix of an inexact two-beat gait of a quadruped, a
four-beat gait of a quadruped, and the stable gait of a biped
with corresponding system parameters. The small differences
in root locus locations of bipedal and two-beat gaits are due
to the coupling of contacts in the quadruped that result in a
small phase shift between back and front leg pairs. Note that
the four-beat gait has one unstable eigenvalue.

sequence, and the computation will result in completely differ-
ent post-impact velocities (Table 3). This means that the stride-
to-stride transfer function of the exact two-beat gait is discon-
tinuous with respect to changes in the initial states. No deriv-
ative of the transfer function exists, and the Jacobian cannot
be computed, making it impossible to apply Floquet analysis
to this gait and quantitatively assess its stability. Nevertheless,
since the exact two-beat gait will depart from a stable limit
cycle as a result of even the smallest disturbance, it can be
considered unstable for all practical purposes. If an exact two-
beat gait were required in an actual physical system, the only
way to achieve it would be through the introduction of a me-
chanical linkage that keeps the two leg pairs exactly in phase
(Osuka and Kirihara 2000).

Beyond the exact two-beat gait, there exist two inexact two-
beat solutions in which the feet strike the ground not exactly
simultaneously, but rather in quick succession. The results pre-
sented here were achieved with the footfall order “front foot–
back foot”. The eigenvalues and walking velocity for the other
gait (with an opposite order of contact) are nearly identical
and not reported separately. Even though there are in fact four
independent foot strikes, we refer to this gait as a two-beat
gait, as the time between the two successive strikes accounts
for less then 0.2% of the total stride time. This gait is slightly
faster than the exact two-beat gait (0.202

�
l � g as compared

with 0.184
�

l � g) as less energy is lost in ground contact col-
lisions. All eigenvalues of the monodromy matrix have a mag-
nitude smaller than one (Table 2 and Figure 4) and thus the
inexact two-beat gait is stable.

To better understand the greater velocity and the lower en-
ergy loss of the inexact two-beat gait, consider that with simul-
taneous collisions the velocity of the center of mass (COM) of
a point mass system can be shown to be redirected at impact
with a collision angle of 2	 (where 	 is identical to the stance
leg angle). For this conceptual model, the post-impact veloc-
ity of the COM is 
� � cos �2	� 
	 (cf. McGeer (1990a) with
rgyr � 0), yielding an energy loss of 17.7% for the given gait. If
the collisions happen in quick succession, however, the COM
is redirected twice with a collision angle of only 	 each time,
leading to 
� � cos2 �	� 
	 and corresponding to an energy
loss of only 9.1%. For our non-point mass model, the actual
energy losses (Table 3) are higher, due to the additional losses
associated with the distributed mass of the system and the ro-
tational motion of the main body between the two collisions.

5.2. Four-beat Gait

In a four-beat gait, the front (or back) foot strike occurs at the
moment at which the hip (or shoulder) is at the highest point
of its arc of motion. The main body COM thus undergoes a
smaller vertical excursion over the course of a stride than the
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Table 3. Post-impact velocities of an exact two-beat gait are compared for different orders of contact. The pre-impact
angles and velocities are equal in all three cases. The different outcomes depend solely on the order in which the contact
events are processed.

Back contact first Front contact first Simultaneous contact

Back stance leg –0.269rad�
�

l� g –0.269rad�
�

l� g –0.261rad�
�

l� g

Back swing leg –0.188rad�
�

l� g –0.198rad�
�

l� g –0.173rad�
�

l� g

Front swing leg –0.198rad�
�

l� g –0.188rad�
�

l� g –0.173rad�
�

l� g

Energy dissipation (percentage of total) 14.8% 14.8% 19.5%

Fig. 5. Passive transition from a slightly disturbed four-beat gait into an inexact two-beat gait. The bottom graph shows how the
angles of the front swing leg and back swing leg evolve over time. It can be clearly seen that the motion of the two legs become
synchronized over just a few of steps. The discontinuities in the graph indicate the transfer of support at foot strike, when the roles
of stance and swing legs are exchanged. The upper portion of the figure shows overlaid video frames for the eight successive
back foot strikes.

two-beat gait, which results in smaller fluctuations in the for-
ward velocity. As the velocities are always highest right be-
fore impact, the four-beat gait can achieve a higher average
speed over the course of a stride while maintaining the same
impact velocities (and therefore impact losses) as the two-beat
gait. In other words, in the four-beat gait a higher fraction
of the system energy is stored as potential energy at the mo-
ment of impact. This means that the total energy in the system
(and therefore the walking speed) is increased while maintain-
ing the same amount of kinetic energy (which determines the
losses at impact). For our system, the four-beat gait achieves a
higher walking speed of 0.224

�
l � g as compared with a speed

of 0.202
�

l � g for the two-beat gait on the same slope.
Unfortunately, while the two-beat gait is dynamically sta-

ble, the four-beat gait has one unstable eigenvalue. This eigen-
value corresponds to the “phase mode” described by Smith and

Berkemeier (1997) and affects the phase shift between back
and front legs (Table 2 and Figure 4). Consequently, a small
disturbance to the four-beat gait will cause the system to de-
viate from its �90� phase difference and transition from the
four-beat gait to the two-beat gait (Figure 5). Efforts to stabi-
lize the four-beat gait and thus to realize its inherent efficiency
are described in Section 6.

6. Stabilization of the Four-beat Gait

6.1. Parameter Variation

To examine the influence of the model parameters on walking
speed and the eigenvalues of the monodromy matrix, a number
of parameter variations were studied. Using the base parameter
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set given in Table 1, parameter ranges were selected such that
a periodic four-beat gait could be identified for all parameter
variations. The following parameters were examined.

(a) Leg mass. The relationship between leg and body mass
was varied such that a single leg contributed between
0.5% and 20% of the total mass. Moment of inertia val-
ues of legs and main body were adjusted accordingly.
Making the legs lighter (in relation to the over all mass)
increased the walking speed and decreased the magni-
tude of the unstable four-beat phase-mode eigenvalue
(Figure 6-I).

(b) Main body length. The length of the main body was var-
ied between 0.2l and 10l. The main body inertia was ad-
justed accordingly. Walking speed and eigenvalue posi-
tions remained almost constant. Less than 1% variation
in walking speed was observed throughout the entire pa-
rameter range.

(c) Main body COM position. The COM of the main body
was shifted along its anteroposterior axis. It was dis-
placed by �0�5l with respect to a centered position. In-
troducing this asymmetry increased the unstable phase-
mode eigenvalue and reduced the walking speed of the
four-beat gait (Figure 7-I).

(d) Leg COM position. The COM of all legs was displaced
along the leg in the range of �0�25l from its nominal
position at 1

3 l below the joints. Walking speed peaked
at 0.231

�
l � g for a COM position of 0.210l below the

joints.

(e) Ground inclination. The inclination of the ground slope
was altered in the range of 0.01� to 10�. Steeper slopes
resulted in a higher walking speed and a less unstable
phase mode with a corresponding eigenvalue closer to
1. Note, however, that the other modes became unstable
for inclinations over 2.3� (Figure 6-III).

(f) Asymmetry with respect to the leg mass. The mass of the
front legs was changed in the range of 0.02M to 0.08M.
The mass of the back legs was correspondingly changed
an equal amount in the opposite direction, such that the
overall mass M of the system remained constant. Mo-
ments of inertia of the legs were adjusted accordingly.
Introducing this asymmetry slightly increased the mag-
nitude of the phase mode eigenvalue (by 6%). The other
eigenvalues and the walking speed remained virtually
constant. Speed reduction with respect to the symmet-
ric configuration was less than 1%.

(g) Asymmetry with respect to the leg length. The front legs
were extended (or shortened) in the range of �0.15l
while the back legs were correspondingly shortened (or
extended). The average leg length remained l. Inertia

values of the legs were adjusted accordingly. Again, the
most symmetric configuration resulted in the smallest
and least unstable phase-mode eigenvalue. In contrast to
other front–back asymmetries, however, walking speed
did not peak for the symmetric configuration. This can
be attributed to the inclined attitude of the main body
that results from the different leg lengths. Depending on
the main body’s inclination, the impacts at foot strike
act either dominantly translational (if the front legs are
shorter) or rotational (if the front legs are longer) on
the main body. The latter results in lower energy losses,
as the rotational inertia of the main body is effectively
smaller than the translational inertia (i.e. the radius of
gyration is smaller than the moment arms of the transla-
tional inertias). Walking speed increases as the front leg
length increases (Figure 7-II).

(h) Asymmetry with respect to the leg COM position. The
position of the front leg COM was displaced along the
leg in the range of �0.25l from its nominal position
while the COM of the back leg was correspondingly
moved the same amount in the opposite direction. The
asymmetry increased the magnitude of all eigenvalues
and reduced the speed of the walker (by 9%). The root
locus plot and velocity graph are conceptually similar to
those obtained by changing the position of the COM of
the main body.

(i) Hip and shoulder spring stiffness. The stiffness of the
torsional hip and shoulder springs was varied from 0
to 1.0 Mgl�rad. With increasing stiffness, these springs
were able to decrease the instability of the phase-
mode eigenvalue while increasing the model’s walking
speed (Figure 6-IV). Increasing the hip stiffness leads
to shorter steps, which in turn reduces the impact losses
and allows for ever-increasing walking velocity.

For none of these variations was a stable four-beat gait iden-
tified. This is consistent with Smith and Berkemeier’s claim
that “. . . this [‘phase’] mode is almost invariably unstable. . . ”.
Nevertheless, two general trends could be observed throughout
the study.

(1) Parameter variations that yielded higher speeds corre-
sponded to a smaller and thus less unstable phase-mode
eigenvalue. This was seen in all symmetric cases, as dis-
cussed below, and additionally included making the legs
lighter (case a), the main body shorter (case b), increas-
ing the inclination angle of the slope (case e), and in-
creasing the stiffness of the hip and shoulder springs
(Figure 6).

(2) Asymmetry of the model always increased the values of
the unstable phase-mode eigenvalue and in most cases
reduced walking speed. Differences between the front



8 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / Xxxxxxxx 2009

Fig 6. (a) The walking speed and (b) the positions of the six eigenvalues when varying the mass of the legs (I), for varying
locations of the COM of the legs (II), for increasing the steepness of the incline on which the system walks (III), and for
increasing stiffness of the torsional hip and shoulder springs (IV). Note that data markers of the same color in the (a) and (b)
plots correspond to the same set of system parameters. As a general trend, parameter variations that increase walking speed tend
to decrease the phase-mode eigenvalue and make it less unstable. In these examples, this holds for lighter legs, for an optimal
COM position of 0.210l below the joints (where walking speed peaked at 0.231

�
l � g), for a steeper inclination of the ground,

and for stiffer hip and shoulder springs. All of these configurations diminished the instability of the phase mode but are not able
to reduce its eigenvalue to less than one.
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Fig 7. Asymmetries with respect to the anteroposterior axis generally increased the values of the unstable eigenvalues and in
most cases reduced the walking speed. Shown as examples are the variation of the COM position of the main body (I) and the
influence of different leg lengths (II). In both cases, the most symmetric configuration resulted in the smallest and least unstable
phase-mode eigenvalue, as can be seen in the root locus plots in (I-b) and (II-b). In general, symmetry also resulted in the fasted
walking speed, as can be seen in (I-a). Similar results were obtained when introducing asymmetry in the mass of the legs or the
position of the leg COM. However, when considering leg length, walking speed does not peak in the symmetric configuration
(II-a). This can be attributed to the inclined attitude of the main body, in which the impacts at foot strike act on the main body
either predominantly translationally (for shorter front legs) or rotationally (for longer front legs). The latter is accompanied by
lower energy losses and results in higher walking speeds. Data markers of the same color in the (a) and (b) plots correspond to
the same set of system parameters.

and the back ends of the model inevitably moved the
phase-mode eigenvalue further away from the unit circle
and peak speed was mostly achieved with a symmetric
configuration with the only exception of asymmetry in
the leg length (Figure 7). This was observed when dis-
placing the position of the main body COM (case c),
as well as when changing the properties of the individ-
ual legs (as in cases f, g, and h). As described in more
detail in Section 7, this was an unexpected result since
significant differences between front and back leg pairs
are present in almost all biological quadrupeds and may
be a result of the limitations of our model.

With the goal of stabilizing the phase-mode eigenvalue, hip
and shoulder springs were the most promising modification.
This is consistent with studies on bipedal robots that have also
reported a beneficial effect of hip springs on stability and walk-
ing speed. Kuo (1999) for example stated, “Speed increases
roughly linearly with spring stiffness . . . The unstable eigen-
values also decrease in magnitude with increasing spring stiff-

ness.”. In quadrupeds, increasing the stiffness of the hip and
shoulder springs also increases the amount of energy that is
stored within a leg pair (and is periodically exchanged between
the two legs of that pair). This means that the relative impor-
tance of the dynamic coupling (between the ground impacts
and the dynamics of the main body) is diminished and the syn-
chronizing effect of these dynamics is reduced. The inability of
all of the parameter studies described above to produce a sta-
ble four-beat gait led us to consider a more significant change
to the structure of the system, as is described in detail below.

6.2. Wobbling Mass

Even though none of the cases of the previous section yields a
phase-mode eigenvalue less than one, the results do suggest an
optimal set of parameters that minimizes the magnitude of the
phase-mode eigenvalue as much as possible, for example, by
using a symmetric model with lightweight legs, a short main
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body, an optimized COM position in the legs, and high stiff-
ness hip and shoulder springs. For practical applications the
remaining instability would then pose a relatively minor con-
trol challenge. Disturbances would grow slowly, leaving a con-
troller ample time to eliminate them.

An active controller, however, is not desirable within the
present context of developing a truly passive dynamic system.
Even if very little controller intervention is required, any actu-
ation will inevitably affect the natural dynamics of the system,
introduce unwanted energy losses, and potentially negatively
affect the dynamic stability of other modes. Instead of design-
ing an active control scheme, an attempt was made here to
augment the system with additional passive elements. To min-
imize any undesired influence on the other passive dynamic
modes, we limited our efforts to modifications of the main
body.

A successful solution was achieved through the inclusion
of a wobbling mass (Figure 8). “Wobbling masses” (e.g. Liu
and Nigg (2000)) are present in all biological vertebrates and
correspond to muscles and other tissue not rigidly connected to
bone that are thus able to move elastically within certain limits.
To emulate such a wobbling mass, half the mass of the main
body (equal to 40% of the total weight of the system) was sep-
arated from the main body link and elastically reattached via a
spring–damper element. To keep the model as simple as pos-
sible, the wobbling mass was only allowed to translate relative
to the main body along its anteroposterior axis� motion in all
other directions was constrained. This modification adds an
additional degree of freedom to the model, corresponding to
the relative motion between the wobbling mass and the main
body. Two additional states (the displacement of the wobbling
mass and the rate of displacement) were added to the system’s
state space. The limit cycle analysis was then modified accord-
ingly.

The wobbling mass stabilized the phase-mode eigenvalue
of the four-beat gait for spring stiffnesses between 1.4 and
2.3 Mg� l with no damping (Figure 9-I). In contrast to the
parameter studies described above, several distinct groups
of solutions were found within the overall range of spring
stiffnesses yielding stable four-beat responses. The groups
can be easily identified within Figure 9-I by the disconti-
nuities in the walking velocity, and the gaps between the
groups can be attributed to resonance interactions of the wob-
bling mass with the periodic walking motion. The first dis-
continuity at a stiffness of around 1.4 Mg� l corresponds
to a resonance case in which the natural frequency of the
wobbling mass swinging relative to the remaining mass is
matched with the strides of the quadruped. For the given pa-
rameters, the stride frequency of the passive dynamic walker
�stride is 2.35 rad�

�
l�g. For a simplified model in which

the wobbling mass mwob and the entire remaining mass mrem

swing freely with respect to each other, the natural fre-
quency �o of the wobbling mass oscillation can be expressed
as

Fig. 8. To stabilize the passive dynamic four-beat gait, a wob-
bling mass was added to the model. Elastically attached to the
main body segment, the mass moves along the anteroposterior
axis of the main body.

�o �
�

k�
mwob � mrem

mwob �mrem

for a given stiffness k. This simplified assumption predicts res-
onance at a stiffness value of

k1 � �2
stride

mwob � mrem

mwob � mrem
� 1�33 Mg� l�

which is in good agreement with observed results. Likewise,
a second resonance can be predicted when matching the step
frequency �step (which is double the stride frequency) with the
wobbling mass oscillation at a spring stiffness of

k2 � �2
step

mwob � mrem

mwob � mrem
� 4 � k1 � 5�30 Mg� l�

In the actual walker, resonance occurs at a slightly higher stiff-
ness of 5.5 Mg�l, corresponding to the gap between the third
and forth solution group in Figure 9-I. For stiffnesses lower
than 1.4 Mg� l and higher than 5.5 Mg� l, the wobbling mass
oscillated slightly at the step frequency, simply following the
excitation from the contact impulses. For resonant oscillations
of the wobbling mass relative to a fixed object (as the main
body approximates to some degree during the exchange of sup-
port), one would predict a stiffness of

k3 � �2
stridemwob � 2�21 Mg� l�

which is again in relatively good agreement with the observed
second gap at 2.5 Mg� l. As one would expect, the wob-
bling mass also showed a more pronounced displacement if
the spring stiffness was close to these critical values.

We found our prediction of the gap locations were still valid
as the fraction of the mass that was allowed to wobble was
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Fig. 9. Shown in (I-b) are the eigenvalues for the phase mode and for the wobbling mass oscillation for increasing stiffness of the
wobbling mass connection. The remaining eigenvalues are omitted for clarity. Part (I-a) shows the corresponding walking speed.
In contrast to previous plots, distinct solution groups can be identified. If half of the main body’s mass is allowed to wobble along
the anteroposterior axis with a spring stiffness in the range of 1.4 Mg� l to 2.3 Mg� l (as indicated by label 1), the phase-mode
eigenvalue moves inside the unit circle (label 2). However, without damping in the wobbling mass, the additional states create
two unstable eigenvalues (label 3). A small amount of damping (values are given as a percentage of the critical damping) can
stabilize the eigenvalues of the wobbling mass (II-b) and yield a fully stable, passive, four-beat gait. The achievable walking
speed (II-a) was nearly unaffected by the damping. Data markers of the same color in the (a) and (b) plots correspond to the same
wobbling mass stiffness.

altered. For wobbling masses of 0.2 M and 0.6 M the same
stabilizing behavior was found for stiffness values in the range
[k1 � � � k3]. Owing to the non-linear dynamical interactions
between the wobbling mass, the two pendula motions of the
leg pairs, and the contact impulses, it is hard to identify an
exact source of the stabilizing effect (or an exact cause for the
instability of the phase mode in the original model).

Although the wobbling mass stabilizes the otherwise un-
stable phase-mode eigenvalue, the two additional eigenvalues
(introduced by the expansion of the state space) were unsta-
ble with no damping present in the connection to the wobbling
mass. Fortunately, a small amount of damping (in the range
of just a few per cent of critical damping) was sufficient to
move these eigenvalues within the unit circle (Figure 9-II). A
slightly damped wobbling mass attached to the main body can
thus fully stabilize the quadrupedal four-beat gait.

7. Discussion

The stabilization of the four-beat gait is only a first step in
the study of passive dynamics in quadrupedal walking. While
the results presented here are significant, the limitations of the
model do not allow a complete study of the properties of all
possible quadrupedal gaits. Figure 10, for example, displays
the large range of gaits that can be found in nature (reproduc-
tion of a gait graph from Hildebrand (1980)), although even
this graph is limited to symmetrical gaits. In a symmetrical
gait, all feet are on the ground for the same amount of time
and the footfalls within each pair of legs are evenly spaced
in time. As a consequence, the left and right side of the body
perform the same motion half a stride out of phase and it is
sufficient to run the simulation only for a half stride. The sym-
metrical gaits of Figure 10 are classified by two numbers: the
percentage of time each foot stays on the ground during one
stride (also called the duty cycle) and the phase shift between
back and front leg on the same side of the quadruped. Nature
utilizes a large range of these gaits (indicated by the shaded
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Fig. 10. The two-beat and four-beat gaits (indicated by the four
crosses) represent only a few distinct solutions in the continu-
ous range of symmetric gaits found in nature. The percentage
of time that each foot is on the ground, and the relative phase
of front and back feet are limited in the simplified model. The
shaded region was adapted from Hildebrand (1980) and shows
the distribution “of more than 1,000 plots for 156 genera of
tetrapods”. The labels (a)–(d) refer to the footfall sequences
depicted in Figure 3 in which the four-beat gaits, “lateral”
in (c) and “diagonal” in (d), are characterized by the order
of back-foot/front-foot strike sequences on each side of the
quadruped.

region) to adapt to various conditions, such as different body
geometries, weight, or locomotion speeds. The Hildebrand di-
agram excludes, for example, asymmetrical bounding or limp-
ing gaits, which would require expansion of our half-stride
analysis framework to include full-stride period-II motions to
be considered.

The simple model presented in this paper is able to repro-
duce only two gaits: a two-beat gait in which the front and back
legs swing in phase, and a four-beat gait in which the leg pairs
are acting 90� out of phase. As the legs are perfectly rigid, ex-
actly two legs are in ground contact at all times, which means
that the duty cycle is 50% in both cases. The gaits studied here
are thus all along the line corresponding to 50% “of stride that
each foot is on the ground” in Figure 10. Since the model is
planar, no difference between left and right exists. This means
that for the two-beat gait a fore footfall is either 0% behind the
hind footfall on the same side or 50% behind. For the four-beat
gain a fore footfall is either 25% or 75% behind the hind foot-

fall on the same side. These two gaits thus yield a total four
points on the graph of Figure 10.

To expand the range of gaits that can be studied,
modifications to the model such as those described below are
required.

(1) To allow for varying duty cycles, the model must allow
for phases in which more or fewer than two legs are in
ground contact. The easiest way of doing this within a
passive model is by making the legs elastic. The com-
pliance permits the legs to contract, which is necessary
for phases of multiple support. The energy stored in the
springs is also necessary to perform dynamic push-off
that propels the quadruped into the air and allows for
phases in which a leg pair is completely off the ground.

(2) To allow for a continuous range of phase shifts, the rigid
coupling of the front and back leg dynamics must be
eliminated. A possible way of achieving this might be
the introduction of elastic elements in the main body
segment. Such an elastic body would additionally elimi-
nate the influence of impacts in one leg pair on the other
leg pair, thereby eliminating unwanted negative work.

The limitations of a planar model also conceal basic aspects of
quadrupedal locomotion. Biological quadrupeds prefer walk-
ing gaits (i.e. gaits with a duty cycle less than 50%� see Fig-
ure 10) in which the legs fall in a lateral gait sequence rather
than in a diagonal gait sequence (see Figure 3 for a definition
of lateral gait sequence). While equivalent in a planar system,
these two gaits create distinctly different support patterns in
three dimensions in which the lateral sequence improves static
stability by keeping the COM of the quadruped closer to the
center of the support polygon. A very good explanation of this
issue can be found in Hildebrand (1980). To produce and study
such phenomena, the model needs to be expanded (at least par-
tially) to three dimensions. Adding a single degree of freedom
and allowing the main body to roll would be a sufficient exten-
sion for such a task.

Also not fully clear is the role of parameter asymmetry be-
tween front and back (as opposed to side-to-side gait asym-
metry), as it is present in almost all living quadrupeds. In our
study parameter asymmetry of the model almost inevitably
degraded walking performance, which raises the question of
whether the asymmetry in nature can be seen as a tradeoff
caused by other necessities, or if it becomes beneficial in
gaits that cannot be replicated with our simplified model. This
is especially interesting, as the possibility of including pa-
rameter asymmetry is a key difference between bipedal and
quadrupedal locomotion systems.

In terms of modeling elasticity, the expansion of the model
to three dimensions allows for an even larger number of possi-
ble extensions. Different main body elasticities for lateral stiff-
ness, longitudinal stiffness, and torsional stiffness could enable
the system to oscillate in many different modes, which in turn
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may correspond to different gaits and could be utilized for dif-
ferent locomotion speeds.

Expanding the range of possible passive motions will be a
primary focus of our future research into quadrupedal passive
dynamic locomotion. Being able to create the same variety of
gaits observed in actual quadrupeds will allow our models to
serve as useful references when studying nature or help to ex-
ploit passive dynamic principles when building robots. This is
especially important in quadrupedal locomotion, where nature
utilizes such a rich range of different motions. Stability, perfor-
mance, and robustness of powered actuation schemes based on
insights gained from studies of passive dynamics are also top-
ics for further research and are important to both quadrupedal
and bipedal walking.

8. Conclusions

The primary goal of this research has been to develop means
of stabilizing the energetically efficient four-beat quadrupedal
gait. To that end, a detailed analysis has been presented that
examines the influence of various parameters on stability and
locomotion speed. Ultimately, stability of the four-beat gait
was achieved through the use of a wobbling mass, i.e. an addi-
tional mass that is elastically attached to the main body of the
quadruped. Moreover, the methods, results, and gait analyses
presented in this paper provide a point of departure for the ex-
ploration of the rich range of quadrupedal locomotion found in
nature.
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